FraksiKata adalah turunan dari kata Latin 'Fractio' yang berarti "mematahkan". Oleh karena itu, pecahan adalah representasi numerik sederhana dari bilangan kompleks. Pecahan dalam bentuk yang paling sederhana adalah di mana satu-satunya faktor persekutuan dari bilangan teratas atau pembilang dan bilangan atau penyebut terbawahnya adalah 1.
64 25. Tags: Question 2 . SURVEY . 20 seconds . Q. Hasil dari 2 0 + 2 0 + 2 0 + 2 0 + 2 0 adalah . answer choices . 0. 1. 5. 10. Tags: Question 3 . SURVEY . 20 seconds . Q. Bentuk sederhana dari 2 5 2 3 \frac{2^5}{2^3} 2 3 2 5 Bentuk sederhana dari 3-2 adalah . answer choices . 1 3
Karenabasis pada ruas kiri adalah 3, maka kita ubah 81 menjadi 3 4. Jadi, himpunan penyelesaian dari persamaan eksponen tersebut adalah x = 2. Mudah ya, Squad? Kalau gitu, kita lanjut ke soal berikutnya. Soal nomor 2 merupakan bentuk persamaan eksponen tidak sederhana karena kalau kita uraikan akan membentuk persamaan kuadrat.
BABVI METODE DESAIN DAN PERENCANAAN GELAGAR / DECK 64 JEMBATAN BAGIAN (2) BAB VII METODE DESAIN DAN PERENCANAAN TIANG JEMBATAN 73 DAFTAR PUSTAKA 3. BAB I PERSYARATAN JEMBATAN A. PENDAHULUAN Bentuk yang sangat sederhana dari jembatan gantung hanya terdiri atas kabel dan jalan. Pada jembatan-jembatan gantung pada zaman kuno, jalan
4 Jika x = 25 dan y = 64, tentukan nilai dari x y y x − ⋅ − 3 2 2 3 1 3 1 2 5. Tentukan bentuk sederhana dari: a. 16 4 4 3 5 b. 1 5 5 25 1 625 0 04 4 4 4 × × × , Contoh Soal 2.8 Sederhanakanlah penyebut dari bentuk pecahan berikut. a.
Bentuksederhana dari (4a pangkat 2 b pangkat 3 dibagi 6ab pangkat 5) pangkat -1 adalah#matematikasmp #matematika #matematikakelas9 #bilanganpangkat #bentukakar
Nl4h. Kelas 10 SMAGrafik, Persamaan, dan Pertidaksamaan Eksponen dan LogaritmaPersamaan EksponenBentuk x^2/3 y^-4/3/y^2/3 x^2^-3/4 dapat disederhanakan menjadi ....Persamaan EksponenGrafik, Persamaan, dan Pertidaksamaan Eksponen dan LogaritmaALJABARMatematikaRekomendasi video solusi lainnya0412Hasil kali semua nilai x yang memenuhi persamaan 4akar x...0322Bentuk sederhana dari a^-2b^6c^-2^-2.a^-1b^3c^-5/4^4 ...0113Nyatakanlah 3m^2 n^3/6mn^7 ke dalam pangkat kali semua nilai x yang memenuhi 4^akarx^3+2x^2-3...Teks videoJika menemukan soal seperti ini hal yang harus kita ketahui adalah apabila suatu bilangan dengan pangkat yang berbeda dibagi Contohnya seperti ini yang a pangkat b dibagi a pangkat C bisa juga bentuknya ditulis menjadi a pangkat b dikali a pangkat min 6 c dan juga bisa juga jadi a pangkat Nini dijumlahkan kan dari b = c jadinya B min c. Nah kalau misalnya contoh satunya lagi kalau misalnya dikali x pangkat 3 dikali x pangkat n apabila bilangan utama yaitu sama maka pangkatnya itu kita jumlahkan apabila dia di kali Apabila bentuknya seperti ini apakah Dek kemarin tutup kurung Lalu ada pangkatnya di luarnya artinya pangkatnya itu dikali jadi bisa juga This is a pangkat 1 B dikali Cnah, kemudian pada soal seperti ini kemudian di luarnya sini kan ada pangkat minus 3/4 kita kan hitungnya angkatnya Kita masukin ke sini di kali lalu ini juga di kali begitu juga ke yang penyebut sehingga ini menjadi x pangkat minus setengah dikali y per Y pangkat minus setengah dikali x pangkat minus 3/2 kemudian penyebutnya akan saya naikin sehingga jadi x pangkat minus setengah dikali x pangkat minus di MI karena dia naik Harusnya kan minus 3 per 2 kan karena dia naik tandanya berubah jadi + 32 kemudian dikali y sama dikali Y pangkat setengah ini karena Y nya nggak ada sama sekali bisa juga kita tulis aja di sini ^ 1 ya y ^ 1 kemudian ini x nya jadi x x menjadi pangkat 1 lalu Y nya jadi ^ 3/2 sehingga sejumlah kita tulis X ini Y pangkat 3 di akarin bisa juga jadi x y akar jawabannya yang sama juga di pembahasan soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Jakarta - Dalam pelajaran matematika ada istilah perpangkatan dan bentuk akar. detikers masih ingat dengan istilah perpangkatan dan bentuk akar?Dilansir dari buku modulmatematika Kemendikbud bertajuk 'Pembelajaran Perpangkatan dan Penarikan Bilangan,' berikut penjelasan mengenai perpangkatan dan bentuk akar1. PerpangkatanPerpangkatan dalam matematika bisa diartikan sebagai pengulangan dari bilangan itu dapat dilambangkan dengana pangkat n = a x a x a x a ............ seterusnya sebanyak dengan jumlah nSebelum mengetahui lebih lanjut, detikers perlu memahami dasar bilangannya dulu seperti contoh di bawah iniContoh1² = 1 1x1 → dibaca 1 pangkat dua atau 1 kuadrat sama dengan 1 2² = 4 2x2 → dibaca 2 pangkat dua atau 2 kuadrat sama dengan 43² = 9 3x3 → dibaca 3 pangkat dua atau 3 kuadrat sama dengan 9 12³ = 12 x 12 x 12 = dan bilangan serta pangkat-pangkat seterusnya Jadi, bilangan berpangkat dua kuadrat adalah nilai perkalian sebuah bilangan dengan bilangan dirinya Soal PerpangkatanTerdiri dari dua bilangan, seperti 78² = ...Penyelesaian78² = 70 + 8²= 70 + 8 70 + 8 = 70² + 2 70 × 8 + 8² = 4900 + 1120 + 64= 6084Jenis operasi bilangan berpangkat terdiri dari penjumlahan berpangkat, perkalian berpangkat, pembagian berpangkat, dan pengurangan ContohnyaA. Perpangkatan PenjumlahanPerpangkatan penjumlahan bisa dikerjakan menggunakan tanda kurung untuk semua bilangan berpangkatnya kemudian + 5² =...= 4 x 4 + 5 x 5= 16 + 25 =41B. Perpangkatan Pengurangan8² - 5² =... = 8 x 8 - 5 x 5 = 64 - 25 =39Atau langsung dengan cara 8² - 5² == 64 - 25 = 39C. Perpangkatan Perkalian3² x 2² =... =3 x 3 x 2 x2 = 9x 4= 36D. Pembagian Berpangkat6² 2² =...=6 x 6 2 x 2= 36 4= 92. Bentuk AkarBentuk akar adalah bentuk sederhana dari akar kuadrat, yakni kebalikan dari bentuk berpangkat akar dilambangkan dengan √ sekaligus untuk menyimbolkan akar pangkat 4 × 4 = 16, maka 16 adalah bentuk akar dari √4 → dibaca akar pangkat dua dari 45²= 5 × 5 = 25, maka 25 adalah bentuk akar dari √5Terbukti, bahwa ternyata akar pangkat dua merupakan operasi kebalikan dari pangkat soalBerapakah akar dari √144? √144 = ....a. Penyelesaian dengan Metode PerkiraanBilangan √144 terletak antara √100 dan √400 atau 10 < √144 < 20, berarti angka puluhannya adalah 1. Angka terakhir dari 144 adalah 4, maka hasil akar pangkat satuannya 2 atau 8. Namun, karena lebih dekat dengan 10, maka hasil akar satuannya adalah 2. Jadi, hasil √144 = 12b. Penyelesaian dengan Faktorisasi PrimaLangkah-langkahnya yang perlu diperhatikan adalah Pertama tentukan faktor-faktor primanya144= 2 × 2 × 2 × 2 × 3 × 3 Kemudian, kelompokkan dalam dua faktor yang sama144= 2 × 2 × 32 × 2 × 3 = 2 × 2 × 3²Maka, hasilnya bisa dihitung√144 = akar dari √2×2×3²= 2 × 2 × 3 = 12Nah itu tadi penjelasan mengenai perpangkatan dan bentuk akar beserta pembahasannya. Ternyata cukup mudah kan detikers? Selamat belajar! Simak Video "Putri Ariani Dapat Beasiswa ke The Juilliard School" [GambasVideo 20detik] nwy/nwy
Kelas 9 SMPBILANGAN BERPANGKAT DAN BENTUK AKARBilangan Berpangkat Pecahan, Negatif, dan NolBilangan Berpangkat Pecahan, Negatif, dan NolBILANGAN BERPANGKAT DAN BENTUK AKARBILANGANMatematikaRekomendasi video solusi lainnya0105Hasil dari 4^-1 + 4^-2 adalah A. 8/16 B. 6/16 C. 5/16 D. ...0315Hasil perkalian dari 4a^-2 x 2a^3 adalah ....Teks videodisini kita mempunyai soal sebagai berikut untuk mengerjakan soal tersebut kita gunakan konsep dari operasi hitung pada bilangan berpangkat perkalian bilangan berpangkat a pangkat n x = a pangkat M maka c = a pangkat n + m kemudian pembagian pangkat n ^ m maka ini = a pangkat n Min m kemudian Jika a pangkat n dipangkatkan n maka ini = a pangkat n * n pada bilangan berpangkat negatif pangkat min m akan sama dengan 1 per a pangkat n akan menyederhanakan bentuk dari soal tersebut 32 pangkat setengah carikan dengan 64 pangkat sepertiganah, kemudian dibagi dengan 16 pangkat min 3 per 8 x = 32 itu adalah 2 ^ 52 ^ 5 B ^ kan dengan setengah kita kalikan dengan 64 itu adalah 2 ^ 65 * 2 ^ 6 dipangkatkan 3 kemudian kita pergi dengan 16 itu adalah 2 pangkat 4 pangkat 2 pangkat 4 pangkat min 3 per 8 = 2 pangkat 5 per 2 dikalikan dengan ini 2 pangkat 2 karena 6 / 3 kan 2 kemudian dibagi dengan 2 pangkat 4 dikalikan dengan min 3 per 85 x 2 pangkat min 12 per 8Nah karena bilangan pokoknya aku sama pokoknya tuh dua contoh perkalian pangkat nya kita jumlahkan Nah kalau pembagian pangkatnya kita kurangi = 2 pangkat min 5 per 2 ditambah dengan 2 itu adalah 4 per 2 kemudian dikurangi dengan MIN 12 per 8 Nah kita jadikan 3 per 2 dalam kurung min 3 per 2 Nah kita peroleh jangan = 2 ^ x menjadi 12 per 25 + 4 + 99 + 3 are negatif ketemu negatif 12 per 2 per 12 per 2 adalah 2 ^ 63jawabannya adalah 2 ^ 6 sampai jumpa soal yang selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Pada pembahasan kali ini, kamu akan belajar mengenai bilangan pecahan. Salah satu penerapan dari bilangan ini adalah ketika kamu sedang memotong kue menjadi beberapa bagian. Untuk menyatakan tiap potongan kue yang kamu buat bisa menggunakan pecahan. Agar kamu semakin memahami tentang pecahan, kamu bisa membaca penjelasan lengkapnya di bawah ini. Dalam matematika, pecahan adalah bilangan yang terdiri dari pembilang dan penyebut. Pembilang adalah semua bilangan bulat dan penyebut adalah semua bilangan asli. Pecahan sering digunakan untuk menyederhanakan nilai pembilang dan penyebut yang cukup besar. Bentuk umum dari pecahan seperti di bawah ini. Dikarenakan pecahan merupakan bentuk sederhana dari pembilang dan penyebut, maka beberapa pecahan memiliki nilai yang sama, meskipun memiliki nilai pembilang dan penyebut yang berbeda. Untuk lebih jelasnya kamu bisa melihat contoh di bawah ini. Meskipun pembilang dan penyebut setiap pecahan di atas berbeda, namun setiap pecahan memiliki nilai yang sama dengan pecahan lainnya. Untuk menyatakan setiap pecahan memiliki nilai yang sama meskipun pembilang dan penyebutnya berbeda, kamu bisa mengubah bentuk pecahan tersebut menjadi bentuk desimal atau menyederhanakan pembilang dan penyebut ke bentuk paling sederhana. Menyederhanakan Pecahan dan Pecahan Senilai Setelah kamu mempelajari tentang pengertian pecahan, kamu akan belajar cara menyederhanakan pecahan dan pecahan senilai. Untuk menyederhanakan suatu pecahan, kamu harus mengetahui faktor pembagi terbesar dari pecahan tersebut. Berikut contoh cara menyederhanakan pecahan dengan melihat faktor pembagi terbesarnya. Pada pecahan A tersebut, pembilang adalah 10 dan penyebutnya adalah 15. Pembilang dan penyebut memiliki faktor pembagi terbesarnya adalah 5. Sehingga kamu bisa membagi pembilang dan penyebutnya dengan angka 5 sehingga ditemukan bentuk sederhananya. Bentuk sederhana dari pecahan A= 10/15 adalah 2/3. Setelah kamu belajar tentang cara menyederhanakan pecahan, selanjutnya kamu akan belajar tentang pecahan senilai. Pecahan senilai adalah pecahan yang memiliki perbandingan antara pembilang dan penyebutnya sama dengan pecahan lainnya. Contoh pecahan senilai bisa kamu lihat di bawah ini. Pada pecahan tersebut, kamu akan melihat bahwa pecahan 2/3 memiliki perbandingan yaitu 2 3. Sedangkan pada pecahan 4/6 , kamu akan melihat perbandingan 46. Perbandingan 46 jika disederhanakan dapat menjadi 23. Sehingga pecahan di atas adalah pecahan senilai. Jenis-Jenis Bilangan Pecahan Setelah kamu mengetahui tentang pengertian dan bentuk umum dari pecahan, selanjutnya kamu akan belajar tentang berbagai jenis pecahan dalam matematika. Pecahan dibagi menjadi 5 bilangan yaitu pecahan biasa, pecahan campuran, pecahan desimal, dan pecahan persen serta permil. Semuanya akan dibahas lengkap di bawah ini. 1. Pecahan Biasa Pecahan pertama yang akan dibahas adalah jenis pecahan biasa. Pecahan biasa adalah pecahan yang memiliki nilai pembilang lebih kecil dari nilai penyebutnya. Salah satu bentuk pecahan biasa adalah sebagai berikut. Dari ketiga contoh di atas, pembilang memiliki nilai yang lebih kecil jika dibandingkan dengan penyebutnya. Namun tidak semua pecahan biasa memiliki nilai pembilang yang lebih kecil dari penyebutnya dikarenakan pecahan tersebut merupakan konversi dari bentuk pecahan lainnya menjadi pecahan biasa seperti konversi pecahan campuran ke pecahan biasa. 2. Pecahan dalam bentuk Campuran Pecahan kedua yang akan di bahas adalah pecahan dalam bentuk campuran. Pecahan dalam bentuk campuran merupakan pecahan yang terdiri dari dua bagian yaitu bilangan bulat dan pecahan itu sendiri. Salah satu contoh dari pecahan campuran bisa kamu lihat di bawah ini. Sebelum pecahan tersebut, terdapat bilangan bulat terlebih dahulu seperti contoh di atas. Jika kamu ingin mengubah bentuk campuran menjadi bentuk biasa, kamu bisa mengalikan bilangan bulat dengan penyebutnya lalu ditambahkan pada pembilang pecahan. Untuk lebih jelasnya, kamu bisa melihat contoh di bawah ini. Pecahan campuran jika diubah menjadi pecahan biasa akan berbentuk . 3. Pecahan dalam bentuk Desimal Pecahan ketiga yang akan dibahas adalah pecahan dalam bentuk desimal. Pecahan dalam bentuk desimal adalah pecahan yang nilai pembilang dan nilai penyebutnya dibagi dan bentuk umum dari pecahan dalam bentuk desimal ditulis dalam bentuk koma seperti di bawah ini. 0,5 adalah salah satu contoh dari pecahan dalam bentuk desimal. Pecahan dalam bentuk desimal biasanya memerlukan konversi terlebih dahulu. 4. Pecahan dalam bentuk Persen dan Permil Pecahan keempat yang akan dibahas adalah pecahan dalam bentuk persen dan permil. Biasanya pecahan dalam bentuk persen adalah pecahan yang penyebutnya adalah 100 dan permil adalah pecahan dengan bentuk penyebutnya adalah 1000. Untuk lebih mudah memahaminya, kamu bisa melihat contoh di bawah ini. Konversi Bilangan Pecahan Setelah kamu belajar mengenai berbagai jenis pecahan, selanjutnya kamu akan belajar konversi pecahan menjadi bentuk pecahan lainnya. Karena pecahan memiliki keadaan senilai, sehingga pecahan bisa dikonversi ke dalam bentuk lainnya. Berikut beberapa konversi pecahan yang senilai. 1. Pecahan menjadi Desimal Konversi pertama yang akan dilakukan adalah mengonversi pecahan biasa menjadi bentuk desimal. Untuk mengubah pecahan biasa menjadi pecahan desimal, caranya cukup mudah karena kamu hanya perlu membagi antara pembilang dengan penyebut seperti contoh di bawah ini. Pada beberapa wilayah, bilangan desimal memiliki penulisan yang berbeda terutama untuk benua Eropa dan Amerika. Kedua benua tersebut memiliki penulisan bilangan desimal menggunakan tanda titik seperti di bawah ini. → penulisan Eropa dan Amerika 0,5 → penulisan selain Eropa dan Amerika 2. Pecahan Persen menjadi Permil Konversi yang kedua adalah konversi persen menjadi permil. Konversi persen menjadi permil dapat dilakukan dengan cara mengalikan angka 10 pada pecahan persen. Dikarenakan pecahan persen adalah pecahan dengan penyebut 100, sehingga untuk menggantinya menjadi 1000, maka harus dikalikan dengan angka 10 seperti contoh di bawah ini. 3. Permil menjadi Pecahan Biasa Konversi ketiga yang akan dilakukan adalah konversi pecahan permil menjadi pecahan biasa. Untuk mengubah permil menjadi pecahan biasa, kamu harus mengubah bentuk permil menjadi bentuk per seribu dan menyederhanakan pembilang dan penyebutnya. Untuk lebih jelasnya, kamu bisa melihat contoh konversi permil menjadi pecahan biasa di bawah ini. 4. Permil menjadi Desimal Konversi terakhir yang akan dijelaskan adalah konversi permil menjadi desimal. Untuk mengonversi permil menjadi desimal, kamu harus mengubah bentuk permil menjadi bentuk perseribu. Selanjutnya kamu bisa membagi antara pembilang dengan angka seribu seperti contoh di bawah ini. Dalam kehidupan sehari-hari, pecahan sangat berperan penting dalam menyederhanakan operasi hitung matematika. Sehingga dengan belajar lebih banyak tentang pecahan, kamu akan mudah untuk memahami konversi pecahan menjadi bentuk pecahan lainnya. Baca Juga Bilangan Positif NegatifBilangan Berpangkat PecahanBilangan EksponenPola Bilangan
bentuk sederhana dari 64 2 3